Kainate receptor subunits underlying presynaptic regulation of transmitter release in the dorsal horn.
نویسندگان
چکیده
Presynaptic kainate (KA) receptors regulate synaptic transmission at both excitatory and inhibitory synapses in the spinal cord dorsal horn. Previous work has demonstrated pharmacological differences between the KA receptors expressed by rat dorsal horn neurons and those expressed by the primary afferent sensory neurons that innervate the dorsal horn. Here, neurons isolated from KA receptor subunit-deficient mice were used to evaluate the contribution of glutamate receptor subunit 5 (GluR5) and GluR6 to the presynaptic control of transmitter release and to KA receptor-mediated whole-cell currents in these two cell populations [corrected]. Deletion of GluR6 produced a significant reduction in KA receptor-mediated current density in dorsal horn neurons, whereas GluR5 deletion caused no change in current density but removed sensitivity to GluR5-selective antagonists. Presynaptic modulation of inhibitory transmission between dorsal horn neurons was preserved in cells from either GluR5- or GluR6-deficient mice. In DRG neurons, in contrast, GluR5 deletion abolished KA receptor function, whereas deletion of GluR6 had little effect on peak current density but increased the rate and extent of desensitization. These results highlight fundamental differences in KA receptor physiology between the two cell types and suggest possible strategies for the pharmacological modulation of nociception.
منابع مشابه
Direct Presynaptic Regulation of GABA/Glycine Release by Kainate Receptors in the Dorsal Horn An Ionotropic Mechanism
In the spinal cord dorsal horn, excitatory sensory fibers terminate adjacent to interneuron terminals. Here, we show that kainate (KA) receptor activation triggered action potential-independent release of GABA and glycine from dorsal horn interneurons. This release was transient, because KA receptors desensitized, and it required Na+ entry and Ca2+ channel activation. KA modulated evoked inhibi...
متن کاملGlutamate and GABA A Painful Combination
Regulation of release of inhibitory neurotransmitter is a key element of plasticity in dorsal horn function. In this issue of Neuron, Kerchner et al. report that neurotransmitter release from inhibitory dorsal horn neurons is affected by activation of presynaptic kainate-type glutamate receptors.
متن کاملPresynaptic kainate receptors regulate spinal sensory transmission.
Small diameter dorsal root ganglion (DRG) neurons, which include cells that transmit nociceptive information into the spinal cord, are known to express functional kainate receptors. It is well established that exposure to kainate will depolarize C-fiber afferents arising from these cells. Although the role of kainate receptors on sensory afferents is unknown, it has been hypothesized that presy...
متن کاملRole of Presynaptic Glutamate Receptors in Pain Transmission at the Spinal Cord Level
Nociceptive primary afferents release glutamate, activating postsynaptic glutamate receptors on spinal cord dorsal horn neurons. Glutamate receptors, both ionotropic and metabotropic, are also expressed on presynaptic terminals, where they regulate neurotransmitter release. During the last two decades, a wide number of studies have characterized the properties of presynaptic glutamatergic recep...
متن کاملKainate receptors and synaptic transmission.
Excitatory glutamatergic transmission involves a variety of different receptor types, each with distinct properties and functions. Physiological studies have identified both post- and presynaptic roles for kainate receptors, which are a subtype of the ionotropic glutamate receptors. Kainate receptors contribute to excitatory postsynaptic currents in many regions of the central nervous system in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 18 شماره
صفحات -
تاریخ انتشار 2002